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Approximate Method of Analysis

A distribution feeder provides service to unbalanced three-phase, 
two-phase, and single-phase loads over untransposed three-phase, 
two-phase, and single-phase line segments. This combination leads 
to the three-phase line currents and the line voltages being 
unbalanced. In order to analyze these conditions as precisely as 
possible, it will be necessary to model all three phases of the 
feeder as accurately as possible. However, many times only a 
“ballpark” answer is needed. When this is the case, some 
approximate methods of modeling and analysis can be employed. 
It is the purpose of this chapter to develop some of the 
approximate methods and leave for later classes the exact models 
and analysis.
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All of the approximate methods of modeling and analysis will 
assume perfectly balanced three-phase systems. It will be assumed 
that all loads are balanced three phase and all line segments will be 
three phase and perfectly transposed. With these assumptions a 
single line-to-neutral equivalent circuit for the feeder will be used.
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Fig.1 Customer 
demand curve 

Voltage Drop
A line-to-neutral equivalent circuit of a three-phase line segment 
serving a balanced three-phase load is shown in Fig.1. 
Kirchhoff's voltage law applied to the circuit of Fig.1 gives

Fig.2 Customer 
demand curve 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝐿𝐿 + 𝑅𝑅 + 𝑗𝑗𝑗𝑗 ∗ 𝐼𝐼 = 𝑉𝑉𝐿𝐿 + 𝑅𝑅 ∗ 𝐼𝐼 + 𝑗𝑗𝑗𝑗 ∗ 𝐼𝐼

The phasor diagram for above equation (1) is shown in Fig.2.

(1)
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Voltage Drop
In Fig.2 the phasor for the voltage drop through the line resistance 
(RI) is shown in phase with the current phasor, and the phasor for 
the voltage drop through the reactance (jXI) is shown leading the 
current phasor by 90°. The dashed lines in Fig.2 represent the real 
and imaginary parts of the impedance (ZI) drop. The voltage drop 
down the line is defined as the difference between the magnitudes of 
the source and the load voltages:

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑆𝑆 − 𝑉𝑉𝐿𝐿 (2)

Fig.1 Customer demand curve Fig.2 Customer demand curve 6
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Voltage Drop

The angle between the source voltage and the load voltage (δ) is 
very small. Because of that, the voltage drop between the source and 
load is approximately equal to the real part of the impedance drop. 
The definition of voltage drop:

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≅ 𝑅𝑅𝑅𝑅(𝑍𝑍 ∗ 𝐼𝐼) (3)

Fig.1 Customer 
demand curve 

Fig.2 Customer 
demand curve 7
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Fig.3

Example 1
In follow Fig.3 and Example 2.3, the impedance of the first line segment is

𝑍𝑍12 = 0.2841 + 𝑗𝑗𝑗.5682 Ω
The current flowing through the line segment is

𝐼𝐼12 = 43.0093∠ − 25.8419 A
The voltage at node N1 is

𝑉𝑉1 = 2400∠𝑗.0 V

The exact voltage at node N2 is computed to be

𝑉𝑉2 = 2400∠𝑗.0 − 0.2841 + 𝑗𝑗𝑗.5682 ∗ 43.0093∠ − 25.8419
           = 2378.4098∠ − 0.4015 V
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Fig.3

Example 1
The voltage drop between the nodes is then

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2400.0000 − 2378.4098 = 21.5902 𝑉𝑉
Compute the voltage drop according to equation (3) gives

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 21.5902−21.6486
21.5902

∗ 100=-0.27%

This example demonstrates the very small error in computing voltage drop when 
using the approximate equation given by equation (3).

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅 0.2841 + 𝑗𝑗𝑗.5682 ∗ 43.0093∠ − 25.8419 = 21.6486 𝑉𝑉
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Fig.4 Three-phase line 
configuration

Line Impedance
For the approximate modeling of a line segment, it will be assumed that the 
line segment is transposed. With this assumption only the positive sequence 
impedance of the line segment needs to be determined. A typical three-phase 
line configuration is shown in Fig.4.

The equation for the positive sequence 
impedance for the configuration shown in 
Fig.4. 

GMR is the conductor geometric mean 
radius (from tables) in feet.

𝑧𝑧𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐸𝐸 + 𝑗𝑗𝑗.12134 ∗ ln
𝐷𝐷𝑝𝑝𝑒𝑒
𝐺𝐺𝐺𝐺𝑅𝑅

⁄Ω 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅

𝐷𝐷𝑝𝑝𝑒𝑒 = 3 𝐷𝐷𝑎𝑎𝑎𝑎 ∗ 𝐷𝐷𝑎𝑎𝑏𝑏 ∗ 𝐷𝐷𝑏𝑏𝑎𝑎 (𝑓𝑓𝑓𝑓)

(4)

(5.a)
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Example 2
A three-phase line segment has the configuration shown in Fig.4. The spacings 
between conductors

𝐷𝐷𝑎𝑎𝑎𝑎 = 2.5 𝑓𝑓𝑓𝑓, 𝐷𝐷𝑎𝑎𝑏𝑏 = 4.5 𝑓𝑓𝑓𝑓, 𝐷𝐷𝑏𝑏𝑎𝑎 = 7.0 𝑓𝑓𝑓𝑓, 

The conductors of the line are 336,400 26/7 Aluminum Conductor Steel Reinforced 
(ACSR).
Determine the positive sequence impedance of the line in Ω/mile.
Solution: 

11

From the table of conductor data in Appendix A,
𝐸𝐸 = 0.306 ⁄Ω 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 
𝐺𝐺𝐺𝐺𝑅𝑅 = 0.0244 𝑓𝑓𝑓𝑓 

Compute the equivalent spacing

𝐷𝐷𝑝𝑝𝑒𝑒 = 3 2.5 ∗ 4.5 ∗ 7.0 = 4.2863 (𝑓𝑓𝑓𝑓)
Using Equation (4),
𝑧𝑧𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.306 + 𝑗𝑗𝑗.12134 ∗ ln

4.2863
0.0244

= 0.306 + 𝑗𝑗𝑗.6272 ⁄Ω 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅
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K Factors
A first approximation for calculating the voltage drop along a line segment is 
given by Equation (3). Another approximation is made by employing a “K” 
factor. There will be two types of K factors, one for voltage drop and the other 
for voltage rise calculations.

The Kdrop factor is defined as:

The Kdrop factor is determined by computing the percent voltage drop down 
a line that is 1 mile long and serving a balanced three-phase load of 1 kVA. 
The percent voltage drop is referenced to the nominal line-to-neutral 
voltage of the line. In order to calculate this factor, the power factor of 
the load must be assumed.

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃𝑓𝑓_𝑉𝑉𝐸𝐸𝑚𝑚𝑓𝑓𝑉𝑉𝑉𝑉𝑅𝑅_𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷

𝑘𝑘𝑉𝑉𝑘𝑘_𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 (5.b)
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Example 3
For the line of Example 3.2, compute the Kdrop factor assuming a load power 
factor of 0.9 lagging and a nominal voltage of 12.47 kV (line to line).

𝑍𝑍 = 0.306 + 𝑗𝑗𝑗.6272 Ω 

Solution: 
The impedance of 1 mile of line was computed to be

The current taken by 1 kVA at 0.9 lagging power factor is given by

I= 1_𝑘𝑘𝑘𝑘𝑘𝑘
3∗𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿

 ∠ − cos−1 𝑃𝑃𝑃𝑃 = 1
3∗12.5

 ∠ − cos−1 0.9
  = 0.046299∠ − 25.84 A 
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Example 3

𝑉𝑉dr𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑍𝑍 ∗ 𝐼𝐼 = 𝑅𝑅𝑅𝑅 (0.306 + 𝑗𝑗𝑗.6272) ∗ (0.𝑗46299∠ − 25.84)
 = 0.025408 V

The voltage drop is computed to be

The nominal line-to-neutral voltage is

𝑉𝑉𝐿𝐿𝐿𝐿 =
12470

3
= 7199.6 𝑉𝑉

The Kdrop factor is then

𝐾𝐾dr𝑑𝑑𝑑𝑑 = 0.025408
7199.6

∗ 100 = 0.𝑗𝑗𝑗35291%𝑑𝑑𝐸𝐸𝐸𝐸𝐷𝐷/𝑘𝑘𝑉𝑉𝑘𝑘_mile
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Example 3
The Kdrop factor computed in Example 3.3 is for the 336,400 26/7 ACSR conductor 
with the conductor spacings defined in Example 3.2, a nominal voltage of 12.47 
kV, and a load power factor of 0.9 lagging. Unique Kdrop factors can be determined 
for all standard conductors, spacings, and voltages. Fortunately, most utilities will 
have a set of standard conductors, standard conductor spacings, and one or two 
standard distribution voltages. Because of this, a simple spreadsheet program can 
be written that will compute the Kdrop factors for the standard configurations. The 
assumed power factor of 0.9 lagging is a good approximation of the power 
factor for a feeder serving a predominately residential load.

The Kdrop factor can be used to quickly compute the approximate voltage drop 
down a line section. For example, assume a load of 7500 kVA is to be served at a 
point 1.5 miles from the substation. Using the Kdrop factor computed in Example 
3.3, the percent voltage drop down the line segment is computed to be

𝑉𝑉dr𝑑𝑑𝑑𝑑 = 𝐾𝐾dr𝑑𝑑𝑑𝑑 ∗ 𝑘𝑘𝑉𝑉𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝 = 0.00035291 ∗ 7500 ∗ 1.5 = 3.9702%
15
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Example 3
This example demonstrates that a load of 7500 kVA can be served 1.5 miles from 
the substation with a resulting voltage drop of 3.97%. Suppose now that the utility 
has a maximum allowable voltage drop of 3.0%. Then the load that can be served 
1.5 miles from the substation is given by

The application of the Kdrop factor is not limited to computing the percent voltage 
drop down just one line segment. When line segments are in cascade, the total 
percent voltage drop from the source to the end of the last line segment is the sum 
of the percent drops in each line segment. This seems logical but it must be 
understood that in all cases the percent drop is in reference to the nominal line-
to-neutral voltage. That is, the percent voltage drop in a line segment is not 
referenced to the source end voltage but rather to the nominal line-to-neutral 
voltage, as would be the usual case. Example 3.4 demonstrates this application.

𝑘𝑘𝑉𝑉𝑘𝑘𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 =
3.0%

0.000035291 ∗ 1.5 = 5694.76 𝑘𝑘𝑉𝑉𝑘𝑘
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Fig.5 Three segment feeder

Example 4
A three-segment feeder is shown in Fig.5.
The Kdrop factor for the line segments is

Solution: 
The total kVA flowing in segment N0 to N1 is

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.00003591 

Determine the percent voltage drop from N0 to N3.

𝑘𝑘𝑉𝑉𝑘𝑘01 = 300 + 750 + 500 = 1550 𝑘𝑘𝑉𝑉𝑘𝑘 
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Fig.5 Three segment feeder

Example 4
The percent voltage drop from N0 to N1 is 

The total kVA flowing in segment N1 to N2 is

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑01 = 0.00003591 ∗ 1550 ∗ 1.5 = 0.8205% 

𝑘𝑘𝑉𝑉𝑘𝑘12 = 750 + 500 = 1250 𝑘𝑘𝑉𝑉𝑘𝑘 

The percent voltage drop from N1 to N2 is
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑12 = 0.00003591 ∗ 1250 ∗ 0.75 = 0.3308% 

18
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Example 4
The kVA flowing in segment N2 to N3 is

The percent voltage drop in the last line segment is
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑23 = 0.00003591 ∗ 500 ∗ 0.5 = 0.0882% 

𝑘𝑘𝑉𝑉𝑘𝑘23 = 500 𝑘𝑘𝑉𝑉𝑘𝑘 

The total percent voltage drop from N0 to N3 is

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 0.8205 + 0.3308 + 0.0882 = 1.2396% 

The application of the Kdrop factor provides an easy way of computing the 
approximate percent voltage drop from a source to a load. It should be kept 
in mind that the assumption has been a perfectly balanced three-phase 
load, an assumed load power factor, and transposed line segments. 
Even with these assumptions, the results will always provide a “ballpark” 
result that can be used to verify the results of more sophisticated methods of 
computing voltage drop. 19
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K Factors
The Krise factor is similar to the Kdrop factor except now the “load” is a shunt capacitor. 
When a leading current flows through an inductive reactance, there will be a voltage 
rise, rather than a voltage drop, across the reactance. This is illustrated by the phasor 
diagram in Fig.6.
Referring to Fig.6 the voltage rise is defined as:

𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑅𝑅(𝑍𝑍𝐼𝐼𝑏𝑏𝑎𝑎𝑑𝑑) = 𝑗𝑗 ∗ 𝐼𝐼𝑏𝑏𝑎𝑎𝑑𝑑 (6)

Fig.6 Voltage rise 
phasor diagram

In equation (6) it is necessary to take the magnitude of the real part of ZI so that the 
voltage rise is a positive number. The Krise factor is defined exactly the same as for 
the Kdrop factor:

𝐾𝐾𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃𝑓𝑓_𝑉𝑉𝐸𝐸𝑚𝑚𝑓𝑓𝑉𝑉𝑉𝑉𝑅𝑅_𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅

𝑘𝑘𝑘𝑘𝑉𝑉𝐸𝐸_𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅
(7)
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Example 5
Q1. Calculate the Krise factor for the line of Fig.4 from Example 3.2.

Fig.4 Three-phase line 
configuration

Solution:
The impedance of 1 mile of line was computed to 
be:

𝑍𝑍 = 0.306 + 𝑗𝑗𝑗.6272 Ω 

The current taken by a 1 kvar three-phase capacitor 
bank is given by

I= 1_𝑘𝑘𝑝𝑝𝑎𝑎𝑑𝑑
3∗𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿

 ∠90 = 1
3∗12.47

∠9𝑗 = 0.046299∠90 A 

The voltage rise per kvar-mile is computed to be
𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑅𝑅(𝑍𝑍𝐼𝐼𝑏𝑏𝑎𝑎𝑑𝑑)
= 𝑅𝑅𝑅𝑅( 0.306 + 𝑗𝑗𝑗.6272 ∗ 0.046299∠9𝑗)

 = 0.029037 V 21
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Example 5
Q1. Calculate the Krise factor for the line of Fig.4 from Example 3.2.

Fig.4 Three-phase line 
configuration

Solution:
The nominal line-to-neutral voltage is

𝑉𝑉𝐿𝐿𝐿𝐿 =
12470

3
= 7199.6 𝑉𝑉

The Krise factor is then

𝐾𝐾𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃𝑓𝑓_𝑉𝑉𝐸𝐸𝑚𝑚𝑓𝑓𝑉𝑉𝑉𝑉𝑅𝑅_𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅

𝑘𝑘𝑘𝑘𝑉𝑉𝐸𝐸_𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅
=

0.029037
7199.6

∗ 100

             =0.00041331% rise/kvar-mile

22
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Example 5
Q2. Determine the rating of a three-phase capacitor bank to limit the voltage 
drop in Example 3.3 to 2.5%.

Solution:
The percent voltage drop in Example 3.3 was computed to be 3.9702%. To 
limit the total voltage drop to 2.5%, the required voltage rise due to a shunt 
capacitor bank is

𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 3.9702 − 2.5 = 1.4702 %

The required rating of the shunt capacitor is

𝑘𝑘𝑘𝑘𝑉𝑉𝐸𝐸 =
𝑉𝑉𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝

𝐾𝐾𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅
=

1.4702
0.00040331 ∗ 1.5

= 2430.18 𝑘𝑘𝑘𝑘𝑉𝑉𝐸𝐸

23
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Uniformly Distributed Loads
Many times it can be assumed that loads are uniformly distributed along a line 
where the line can be a three-phase, two-phase, or single-phase feeder or 
lateral. This is certainly the case on single-phase laterals where the same rating 
transformers are spaced uniformly over the length of the lateral. When the 
loads are uniformly distributed, it is not necessary to model each load in order 
to determine the total voltage drop from the source end to the last load. Fig.7 
shows a generalized line with n uniformly distributed loads.

Fig.7 Voltage rise phasor diagram 24

ECpE Department



Uniformly Distributed Loads-Voltage Drop
Fig.7 shows n uniformly spaced loads dx miles apart. The loads are all equal and will 
be treated as constant current loads with a value of di. The total current into the feeder 
is IT. It is desired to determine the total voltage drop from the source node (S) to the 
last node n.
Let
l be the length of the feeder
z = r + jx be the impedance of the line in Ω/mile
dx be the length of each line section
di be the load currents at each node
n be the number of nodes and number of line 
sections
IT be the total current into the feeder

Fig.7 Voltage rise phasor diagram

The load currents are given by

𝑑𝑑𝑚𝑚 =
𝐼𝐼𝑇𝑇
𝑃𝑃

(8)

The voltage drop in the first line 
segment is given by

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝑑𝑑𝑑𝑑 ∗ (𝑃𝑃 ∗ 𝑑𝑑𝑚𝑚)} (9)
The voltage drop in the second 
line segment is given by

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝑑𝑑𝑑𝑑 ∗ [(𝑃𝑃 − 1) ∗ 𝑑𝑑𝑚𝑚]}
(10)25

ECpE Department



Uniformly Distributed Loads-Voltage Drop

Fig.7 Voltage rise 
phasor diagram

The total voltage drop from the source node to the last node is then given 
by 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_1 + 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_2+…+𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑛𝑛

(11)
Equation (11) can be reduced by recognizing the series expansion:

1 + 2 + 3 + ⋯+ 𝑃𝑃 =
𝑃𝑃 ∗ (𝑃𝑃 + 1)

2 (12)

Using the expansion, Equation (11) becomes
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝑑𝑑𝑑𝑑 ∗ 𝑑𝑑𝑚𝑚 ∗ [

𝑃𝑃 ∗ (𝑃𝑃 + 1)
2

]} (13)

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝑑𝑑𝑑𝑑 ∗ 𝑑𝑑𝑚𝑚 ∗ [𝑃𝑃 + 𝑃𝑃 − 1 + (𝑃𝑃 − 2 + ⋯+ (1))]}

26

𝑃𝑃 + 𝑃𝑃 − 1 + 𝑃𝑃 − 2 + ⋯+ 1 =
𝑃𝑃 ∗ (𝑃𝑃 + 1)

2
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Uniformly Distributed Loads-Voltage Drop
The incremental distance and incremental distance is

(14)

Substituting Equations (14) and (15) into Equation (13) results in

(16)

Equation (16) gives the general equation for computing the total voltage drop 
from the source to the last node n for a line of length l. In the limiting case 
where n goes to infinity, the final equation becomes

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅
1
2 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇  (17)

𝑑𝑑𝑑𝑑 =
𝑚𝑚
𝑃𝑃 𝑑𝑑𝑚𝑚 =

𝐼𝐼𝑇𝑇
𝑃𝑃 (15)

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅 𝑧𝑧 ∗
𝑚𝑚
𝑃𝑃 ∗

𝐼𝐼𝑇𝑇
𝑃𝑃 ∗

𝑃𝑃 ∗ 𝑃𝑃 + 1
2

                      =𝑅𝑅𝑅𝑅 𝑧𝑧 ∗ 𝑚𝑚 ∗ 𝐼𝐼𝑇𝑇 ∗
1
2

(𝑛𝑛+1
𝑛𝑛

)

                      =𝑅𝑅𝑅𝑅 1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇  (1 + 1

𝑛𝑛
)where Z = z · l.
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Fig.8 Load lumped at the 
midpoint

Fig.9 One-half load lumped at the 
end

In Equation (17) Z represents the total impedance from the source to the end of the 
line. The voltage drop is the total from the source to the end of the line. The equation 
can be interpreted in two ways. The first is to recognize that the total line distributed 
load can be lumped at the midpoint of the lateral as shown in Fig.8.
A second interpretation of Equation (17) is to lump one-half of the total line load at 
the end of the line (node n). This model is shown in Fig.9.
Fig.8 and Fig.9 give two different models that can be used to calculate the total 
voltage drop from the source to the end of a line with uniformly distributed loads.

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅
1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇  (17)

28
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Fig.8 Load lumped at the midpoint Fig.9 One-half load lumped at the end

Of equal importance in the analysis of a distribution feeder is the power loss. If the 
model of Fig.8 is used to compute the total three-phase power loss down the line, the 
result is

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗ 𝐼𝐼𝑇𝑇 2 ∗
𝑅𝑅
2

=
3
2
∗ 𝐼𝐼𝑇𝑇 2∗R (18)

When the model of Fig.9 is used to compute the total three-phase power loss, the 
result is

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗
𝐼𝐼𝑇𝑇
2

2
∗ R =

3
4
∗ 𝐼𝐼𝑇𝑇 2∗R (19)

It is obvious that the two models give different results for the power loss. The 
question is, Which one is correct? 
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The answer is neither one…

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝1 = 3 ∗ (𝐸𝐸 ∗ 𝑑𝑑𝑑𝑑) ∗ (𝑃𝑃 ∗ 𝑑𝑑𝑚𝑚) 2

(21)

(20)

To derive the correct model for power loss, reference is made to Fig.7 and the 
definitions for the parameters in that figure. The total three-phase power loss 
down the line will be the sum of the power losses in each short segment of the 
line. For example, the three-phase power loss in the first segment is

Fig.7 Voltage rise 
phasor diagram

The power loss in the second segment is given by

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝2 = 3 ∗ (𝐸𝐸 ∗ 𝑑𝑑𝑑𝑑) ∗ 𝑃𝑃 − 1 ∗ 𝑑𝑑𝑚𝑚 2
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Uniformly Distributed Loads-Power Loss
The total power loss over the length of the line is then given by

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 ∗ 𝐸𝐸 ∗ 𝑑𝑑𝑑𝑑 ∗ 𝑑𝑑𝑚𝑚 2 ∗ [𝑃𝑃2 + 𝑃𝑃 − 1 2 + 𝑃𝑃 − 2 2 + ⋯+ 12]

(23)

(22)
The series inside the bracket of Equation (22) is the sum of the squares of n 
numbers and is equal to

12 + 22 + 32 + ⋯+ 𝑃𝑃2 =
𝑃𝑃 ∗ 𝑃𝑃 + 1 ∗ (2𝑃𝑃 + 1)

6
Substituting Equations (14), (15), and (23) into Equation (22) gives

(14)𝑑𝑑𝑑𝑑 =
𝑚𝑚
𝑃𝑃 𝑑𝑑𝑚𝑚 =

𝐼𝐼𝑇𝑇
𝑃𝑃 (15)

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 ∗ 𝐸𝐸 ∗
𝑚𝑚
𝑃𝑃 ∗

𝐼𝐼𝑇𝑇
𝑃𝑃

2
∗ [
𝑃𝑃 ∗ 𝑃𝑃 + 1 ∗ (2𝑃𝑃 + 1)

6 ] (24)
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Simplifying Equation (24)

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 ∗ 𝐸𝐸 ∗
𝑚𝑚
𝑃𝑃 ∗

𝐼𝐼𝑇𝑇
𝑃𝑃

2
∗ [
𝑃𝑃 ∗ 𝑃𝑃 + 1 ∗ (2𝑃𝑃 + 1)

6 ] (24)

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗ [
𝑃𝑃 + 1 ∗ (2𝑃𝑃 + 1)

6 ∗ 𝑃𝑃2 ]

                      = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗ [2∗𝑛𝑛
2+3∗𝑛𝑛+1
6∗𝑛𝑛2

]

                       = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗ [1
3

+ 1
2∗𝑛𝑛

+ 1
6∗𝑛𝑛2

] (25)

where R = r · l is the total resistance per phase of the line segment.
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Uniformly Distributed Loads-Power Loss
𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗ [

1
3

+
1

2 ∗ 𝑃𝑃
+

1
6 ∗ 𝑃𝑃2

] (25)

where R = r · l is the total resistance per phase of the line segment.

Equation (25) gives the total three-phase power loss for a discrete number of nodes 
and line segments. For a truly uniformly distributed load, the number of nodes goes to 
infinity. When that limiting case is taken in Equation (25), the final equation for 
computing the total three-phase power loss down the line is given by

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 [
1
3
∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2] (26)

A circuit model for Equation (26) is given in Figure 3.9.

Fig.10 Power loss model 33
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Fig.10 Power loss model

Fig.8 Load lumped at the 
midpoint

Fig.9 One-half load lumped at the 
end

From a comparison of Fig.8 and Fig.9, used for voltage drop calculations, to 
Fig.10, used for power loss calculations, it is obvious that the same model 
cannot be used for both voltage drop and power loss calculations.
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Uniformly Distributed Loads-Exact 
Lumped Load Model

Fig.11 General exact 
lumped load model

In the previous sections lumped load models were developed. The first models of 
Voltage Drop section can be used for the computation of the total voltage drop 
down the line. It was shown that the same models cannot be used for the 
computation of the total power loss down the line. Power Loss section developed a 
model that will give the correct power loss of the line. What is needed is one model 
that will work for both voltage drop and power loss calculations.
Fig.11 shows the general configuration of the “exact” model that will give correct 
results for voltage drop and power loss.
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Lumped Load Model

Fig.11 General exact 
lumped load model

In Fig.11 a portion (Ix) of the total line current (IT) will be modeled kl miles from 
the source end and the remaining current (cIT) will be modeled at the end of the 
line. The values of k and c need to be derived.
In Fig.11 the total voltage drop down the line is given by

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅 [𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 + 1 − 𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇] (27)
where
•Z is the total line impedance in ohms
•k is the factor of the total line length where the first part of the load current is modeled
•c is the factor of the total current to be placed at the end of the line such that IT = Ix + c · IT

36

ECpE Department



Uniformly Distributed Loads-Exact 
Lumped Load Model
In Voltage Drop section, it was shown that the total voltage drop down the line is 
given by

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅 [
1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇] (28)

Set Equation (17) equal to Equation (27):

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅 [𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 + 1 − 𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇] (27)

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅
1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇  (17)

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅 [1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇]=𝑅𝑅𝑅𝑅 [𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 + 1 − 𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇] (29)

Equation (29) shows that the terms inside the brackets on both sides of the equal side 
need to be set equal, that is

1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 = [𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 + 1 − 𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇] (30)
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Lumped Load Model

1
2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 = [𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 + 1 − 𝑘𝑘 ∗ 𝑍𝑍 ∗ 𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇] (30)

Simplify Equation (30) by dividing both sides of the equation by ZIT:

1
2

= [𝑘𝑘 + 1 − 𝑘𝑘 ∗ 𝑃𝑃] (31)

Solve Equation (31) for k:

𝑘𝑘 =
0.5 − 𝑃𝑃
1 − 𝑃𝑃 (32)

The same procedure can be followed for the power loss model. The total three-phase 
power loss in Fig.11 is given by

Fig.11 General exact lumped load model

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 [𝑘𝑘 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2

                           + 1 − 𝑘𝑘 ∗ 𝑅𝑅 ∗ (𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇 )2]
(33)
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Lumped Load Model

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 [𝑘𝑘 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 + 1 − 𝑘𝑘 ∗ 𝑅𝑅 ∗ (𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇 )2] (33)

Fig.10 Power loss model

The model for the power loss of Fig.10 gives the total three-phase power loss as

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 [
1
3
∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2] (34)

Equate the terms inside the brackets of Equations (33) and (34) and simplify:

1
3
∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 = [𝑘𝑘 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 + 1 − 𝑘𝑘 ∗ 𝑅𝑅 ∗ (𝑃𝑃 ∗ 𝐼𝐼𝑇𝑇 )2]

(35)

1
3

= [𝑘𝑘 + 1 − 𝑘𝑘 ∗ (𝑃𝑃)2]
1
3

= 𝑘𝑘 + 𝑃𝑃2 − 𝑘𝑘 ∗ 𝑃𝑃2 = 𝑘𝑘 ∗ (1 − 𝑃𝑃2) + 𝑃𝑃2
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(32)

Substitute Equation (32) into Equation (35)

1
3

=
0.5 − 𝑃𝑃
1 − 𝑃𝑃

∗ (1 − 𝑃𝑃2) + 𝑃𝑃2 (36)

Solving Equation (36) for c results in

𝑃𝑃 =
1
3

𝑘𝑘 =
0.5 − 𝑃𝑃
1 − 𝑃𝑃

(35)1
3

= 𝑘𝑘 + 𝑃𝑃2 − 𝑘𝑘 ∗ 𝑃𝑃2 = 𝑘𝑘 ∗ (1 − 𝑃𝑃2) + 𝑃𝑃2

(37)

Substitute Equation (37) into Equation (32) and solve for k:

𝑘𝑘 =
1
4 (38)40
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𝑃𝑃 =
1
3

(37) 𝑘𝑘 =
1
4

(38)

The interpretation of Equations (37) and (38) is that one-third of the load should be 
placed at the end of the line and two-thirds of the load placed one-fourth of the way 
from the source end. Figure 3.11 gives the final exact lumped load model.

Fig.12 Exact lumped load model 41
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Lumping Loads in Geometric Configurations
Many times feeder areas can be represented by geometric configurations such 
as rectangles, triangles, and trapezoids. By assuming a constant load density in 
the configurations, approximate calculations can be made for computing the 
voltage drop and total power losses. The approximate calculations can aid in 
the determination of the maximum load that can be served in a specified area 
at a given voltage level and conductor size. For all of the geographical areas to 
be evaluated, the following definitions will apply:

D represents the load density in kVA/mile2.
PF represents the assumed lagging power factor.
z represents the line impedance in Ω/mile.
l represents the length of the area.
w represents the width of the area.
kVLL represents the nominal line-to-line voltage in kV.
It will also be assumed that the loads are modeled as constant current loads.
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Lumping Loads in Geometric 
Configurations-Rectangle 
A rectangular area of length l and width w is to be served by a primary main feeder. 
The feeder area is assumed to have a constant load density with three-phase laterals 
uniformly tapped off of the primary main. Fig.13 shows a model for the rectangular 
area.
Fig.13 represents a rectangular area of constant load density being served by a 
three-phase main running from node n to node m. It is desired to determine the total 
voltage drop and the total three-phase power loss down the primary main from 
node n to node m.

Fig.13 Constant load 
density rectangular area
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Lumping Loads in Geometric 
Configurations-Rectangle 
The total current entering the area is given by

Fig.13 Constant load 
density rectangular area

𝐼𝐼𝑇𝑇 =
𝐷𝐷 ∗ 𝐿𝐿 ∗ 𝑤𝑤

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
∠ − cos−1(𝑃𝑃𝑃𝑃) (39)

An incremental segment is located x miles from node n. The incremental current 
serving the load in the incremental segment is given by

𝑑𝑑𝑚𝑚 =
𝐼𝐼𝑇𝑇
𝑚𝑚

 𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 (40)
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Lumping Loads in Geometric 
Configurations-Rectangle 
The current in the incremental segment is given  by

Fig.13 Constant load 
density rectangular area

𝑚𝑚 = 𝐼𝐼𝑇𝑇 − 𝑑𝑑 ∗ 𝑑𝑑𝑚𝑚 = 𝐼𝐼𝑇𝑇 − 𝑑𝑑 ∗ 𝐼𝐼𝑇𝑇
𝑚𝑚

= 𝐼𝐼𝑇𝑇*(1 − 𝑥𝑥
𝑚𝑚
) (41)

The voltage drop in the incremental segment is

𝑑𝑑𝑉𝑉 = 𝑅𝑅𝑅𝑅(𝑧𝑧 ∗ 𝑚𝑚 ∗ 𝑑𝑑𝑑𝑑) = 𝑅𝑅𝑅𝑅(𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇 ∗ (1 −
𝑑𝑑
𝑚𝑚 ) ∗ 𝑑𝑑𝑑𝑑) (42)
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Lumping Loads in Geometric 
Configurations-Rectangle 

The total voltage drop down the primary main feeder is

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
0

𝑚𝑚

𝑑𝑑𝑘𝑘 = 𝑅𝑅𝑅𝑅[𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇 ∗ �
0

𝑚𝑚

(1 −
𝑑𝑑
𝑚𝑚 ) ∗ 𝑑𝑑𝑑𝑑]

(41)

Evaluating the integral and simplifying,

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅[𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇 ∗
1
2
∗ 𝑚𝑚] = 𝑅𝑅𝑅𝑅[1

2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇] (43)

where Z = z · l.

Equation (43) gives the same result as that of Equation (17) which was 
derived for loads uniformly distributed along a feeder. The only difference 
here is the manner in which the total current (IT) is determined.

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑅𝑅
1
2 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇  (17)
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The bottom line is that the total load of a rectangular area can be modeled at 
the centroid of the rectangle as shown in Fig.14.
It must be understood that in Fig.14 with the load modeled at the centroid, 
the voltage drop computed to the load point will represent the total voltage 
drop from node n to node m.

Fig.14 Rectangle 
voltage drop model
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A similar derivation can be done in order to determine the total three-phase power 
loss down the feeder main. The power loss in the incremental length is

Fig.15 Rectangle power 
loss model

dp = 3 ∗ 𝑚𝑚 2 ∗ 𝐸𝐸 ∗ 𝑑𝑑𝑑𝑑 = dp = 3 ∗ [ 𝐼𝐼𝑇𝑇 2 ∗ 1 −
𝑑𝑑
𝑚𝑚

2
∗ 𝐸𝐸 ∗ 𝑑𝑑𝑑𝑑]

        =3*r* 𝐼𝐼𝑇𝑇 2*(1-2*𝑥𝑥
𝑚𝑚
+𝑥𝑥

2

𝑚𝑚2
)*dx

The total three-phase power loss down the primary main is

𝑃𝑃loss = ∫0
𝑚𝑚 𝑑𝑑𝐷𝐷 = 3 ∗ 𝐸𝐸 ∗ 𝐼𝐼𝑇𝑇 2 ∗ ∫0

𝑚𝑚(1−2∗ 𝑥𝑥
𝑚𝑚

+ 𝑥𝑥2

𝑚𝑚2
) 𝑑𝑑𝑑𝑑
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Evaluating the integral and simplifying,

Fig.15 Rectangle power loss model

𝑃𝑃loss = 3 ∗ [
1
3
∗ 𝐸𝐸 ∗ 𝑚𝑚 ∗ 𝐼𝐼𝑇𝑇 2] = 3 ∗ [

1
3
∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2] (44)

where R = r · l.
Equation (44) gives the same result as that of Equation (26). The only difference, 
again, is the manner in which the total current IT is determined. The model for 
computing the total three-phase power loss of the primary main feeder is shown in 
Fig.15. Once again, it must be understood that the power loss computed using the 
model of Fig.15 represents the total power loss from node n to node m.

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝_𝑝𝑝𝑑𝑑𝑝𝑝𝑎𝑎𝑚𝑚 = 3 [
1
3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2] (26)
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Example 6
It is proposed to serve a rectangular area of length 10,000 ft and width of 6,000 ft. 
The load density of the area is 2500 kVA/mile2 with a power factor of 0.9 lagging. 
The primary main feeder uses 336,400 26/7 ACSR on a pole configured as shown 
in Example 3.2, Fig.4. The question at hand is what minimum standard nominal 
voltage level can be used to serve this area without exceeding a voltage drop of 3% 
down the primary main? The choices of nominal voltages are 4.16 and 12.47 kV. 
Compute also the total three-phase power loss.

Fig.4 Three-phase 
line configuration
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Example 6
Solution
The area to be served is shown in Fig.16.
From Example 3.2, the impedance of the line was computed to be

Fig.16 Example 3.6: 
rectangular area

𝑧𝑧 = 0.306 + 𝑗𝑗𝑗.6272 Ω/𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅
The length and width of the area in miles are

𝑚𝑚 =
10,000
5,280 = 1.8939 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 𝑤𝑤 =

6,000
5,280 = 1.1364 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
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Example 6
The total area of the rectangular area is

A= 𝑚𝑚 ∗ 𝑤𝑤 = 2.1522 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅2

The total load of the area is

kV𝑘𝑘 = 𝐷𝐷 ∗ 𝑘𝑘 = 2500 ∗ 2.1522 = 5380.6 𝑘𝑘𝑉𝑉𝑘𝑘
The total impedance of the line segment is

Z= 𝑧𝑧 ∗ 𝑚𝑚 = 0.306 + 𝑗𝑗𝑗.6272 ∗ 1.8939 = 0.5795 + 𝑗𝑗1.1879Ω

For a nominal voltage of 4.16 kV, the total area current is

𝐼𝐼𝑇𝑇 =
𝑘𝑘𝑉𝑉𝑘𝑘

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
=

5380.6
3 ∗ 4.16

∠ − cos−1 0.9 = 746.7∠ − 25.84 𝑘𝑘

The total voltage drop down the primary main is

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅
1
2 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 = 𝑅𝑅𝑅𝑅

1
2 ∗ 0.5795 + 𝑗𝑗1.1879 ∗ 746.7∠ − 25.84

= 338.1𝑉𝑉 52
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Example 6
The nominal line-to-neutral voltage is

𝑉𝑉𝐿𝐿𝐿𝐿 =
4160

3
= 2401.8 𝑉𝑉

The percent voltage drop is

𝑉𝑉% =
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝐿𝐿𝐿𝐿

∗ 100% =
388.1

2401.8
∗ 100% = 16.16%

It is clear that the nominal voltage of 4.16 kV will not meet the criteria of a voltage 
drop less than 3.0%.
For a nominal voltage of 12.47 kV, the total area current is

𝐼𝐼𝑇𝑇 =
𝑘𝑘𝑉𝑉𝑘𝑘

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
=

5380.6
3 ∗ 12.47

∠ − cos−1 0.9 = 249.1∠ − 25.84 𝑘𝑘

The total voltage drop down the primary main is

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅
1
2 ∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 = 𝑅𝑅𝑅𝑅

1
2 ∗ 0.5795 + 𝑗𝑗1.1879 ∗ 249.1∠ − 25.84

= 129.5𝑉𝑉 53
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Example 6
The nominal line-to-neutral voltage is

𝑉𝑉𝐿𝐿𝐿𝐿 =
12,470

3
= 7,199.6 𝑉𝑉

The percent voltage drop is

𝑉𝑉% =
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝐿𝐿𝐿𝐿

∗ 100% =
129.5

7,199.6
∗ 100% = 1.80%

The nominal voltage of 12.47 kV is more than adequate to serve this load. It would 
be possible at this point to determine how much larger the area could be and still 
satisfy the 3.0% voltage drop constraint.
For the 12.47 kV selection, the total three-phase power loss down the primary main 
is

𝑃𝑃loss = 3 ∗
1
3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2

1000
=

1
3 ∗ 0.5795 ∗ 249.1 2

1000
= 35.965 𝑘𝑘𝑘𝑘
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Lumping Loads in Geometric 
Configurations-Trapezoid 

The final geometric configuration to consider is the trapezoid. As before, it is 
assumed that the load density is constant throughout the trapezoid. The general 
model of the trapezoid is shown in Fig.17.

Fig.17 General trapezoid

Fig.17 shows a trapezoidal area of constant load density being served by a three-
phase primary running from node n to node m. It is desired to determine the total 
voltage drop and the total three-phase power loss down the primary main from node 
n to node m.
It is necessary to determine the value of the current entering the incremental line 
segment as a function of the total current and the known dimensions of the trapezoid. 
The known dimensions will be the length (l) and the widths w1 and w2.
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Fig.17 General trapezoid

The total current entering the trapezoid is

𝐼𝐼𝑇𝑇 =
𝐷𝐷 ∗ 𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿

(45)

where AreaT is the total area of the trapezoid given by

𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇 =
1
2
∗ 𝑤𝑤2 + 𝑤𝑤1 ∗ 𝑚𝑚 (46)

The current that is delivered to the trapezoid abef is

𝐼𝐼𝑥𝑥 =
𝐷𝐷 ∗ 𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
(47)

where Areax is the area of the 
trapezoid abef given by

𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥 =
1
2
∗ 𝑤𝑤𝑥𝑥 + 𝑤𝑤1 ∗ 𝑑𝑑 (48)
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Fig.17 General trapezoid

𝐼𝐼𝑇𝑇 =
𝐷𝐷 ∗ 𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
(45)

Solve Equation (45) for D:

𝐷𝐷 =
3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿 ∗ 𝐼𝐼𝑇𝑇
𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇

(49)

Substitute Equation (49) into Equation (47):

𝐼𝐼𝑥𝑥 =
𝐷𝐷 ∗ 𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥

3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿
(47) 𝐼𝐼𝑥𝑥 =( 3∗𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿∗𝐼𝐼𝑇𝑇

𝑘𝑘𝑑𝑑𝑝𝑝𝑎𝑎𝑇𝑇
)*( 𝑘𝑘𝑑𝑑𝑝𝑝𝑎𝑎𝑥𝑥

3∗𝑘𝑘𝑘𝑘𝐿𝐿𝐿𝐿
)=𝑘𝑘𝑑𝑑𝑝𝑝𝑎𝑎𝑥𝑥
𝑘𝑘𝑑𝑑𝑝𝑝𝑎𝑎𝑇𝑇

∗ 𝐼𝐼𝑇𝑇 (50)

The current entering the incremental line 
segment is

𝑚𝑚 = 𝐼𝐼𝑇𝑇 − 𝐼𝐼𝑥𝑥 = (1 −
𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥
𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇

) ∗ 𝐼𝐼𝑇𝑇 (51)
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Fig.18 Trapezoid dimensions

𝑤𝑤𝑥𝑥 = 𝑤𝑤1+2∗ 𝑦𝑦𝑥𝑥 (52)

The only problem at this point is that the area of the small trapezoid cannot be 
determined since the width wx is not known. Fig.18 will be used to establish the 
relationship between the unknown width and the known dimensions.
Referring to Fig.18,

From similar triangles,

𝑦𝑦𝑥𝑥 =
𝑑𝑑
𝑚𝑚
∗ 𝑦𝑦2 (53) 𝑦𝑦2 =

1
2
∗ (𝑤𝑤2 − 𝑤𝑤1) (54)
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𝑦𝑦𝑥𝑥 =
𝑑𝑑
𝑚𝑚
∗ 𝑦𝑦2 (53) 𝑦𝑦2 =

1
2
∗ (𝑤𝑤2 − 𝑤𝑤1) (54)

Substitute Equation (53) into Equation (54):

𝑦𝑦𝑥𝑥 =
𝑑𝑑
𝑚𝑚
∗

1
2
∗ (𝑤𝑤2 − 𝑤𝑤1) (55)

Substitute Equation (55) into Equation (52):

𝑤𝑤𝑥𝑥 = 𝑤𝑤1+2∗ 𝑦𝑦𝑥𝑥 (52) 𝑤𝑤𝑥𝑥 = 𝑤𝑤1 + 2 ∗
𝑑𝑑
𝑚𝑚
∗

1
2
∗ 𝑤𝑤2 − 𝑤𝑤1

= 𝑤𝑤1 ∗ 1 −
𝑑𝑑
𝑚𝑚

+
𝑑𝑑
𝑚𝑚
∗ 𝑤𝑤2

(56)

59

ECpE Department



Lumping Loads in Geometric 
Configurations-Trapezoid 

𝑤𝑤𝑥𝑥 = 𝑤𝑤1 ∗ 1 −
𝑑𝑑
𝑚𝑚

+
𝑑𝑑
𝑚𝑚
∗ 𝑤𝑤2 (56)𝐼𝐼𝑥𝑥 =

𝐷𝐷 ∗ 𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥
3 ∗ 𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿

(47)

Substitute Equation (56) into Equation (47):

𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥 =
1
2
∗ [ 𝑤𝑤1 ∗ 1 −

𝑑𝑑
𝑚𝑚

+
𝑑𝑑
𝑚𝑚
∗ 𝑤𝑤2 + 𝑤𝑤1] ∗ 𝑑𝑑 (57)

Substitute Equations (46) and (57) into Equation (51):

𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇 =
1
2
∗ 𝑤𝑤2 + 𝑤𝑤1 ∗ 𝑚𝑚 (46) 𝑚𝑚 = 𝐼𝐼𝑇𝑇 − 𝐼𝐼𝑥𝑥 = (1 −

𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑥𝑥
𝑘𝑘𝐸𝐸𝑅𝑅𝑉𝑉𝑇𝑇

) ∗ 𝐼𝐼𝑇𝑇 (51)

𝑚𝑚 =
𝐼𝐼𝑇𝑇

𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑚𝑚
∗ [ 𝑚𝑚 − 2 ∗ 𝑑𝑑 +

𝑑𝑑2

𝑚𝑚
∗ 𝑤𝑤1 + (1 −

𝑑𝑑2

𝑚𝑚
) ∗ 𝑤𝑤2] (58)
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𝑚𝑚 =
𝐼𝐼𝑇𝑇

𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑚𝑚
∗ [ 𝑚𝑚 − 2 ∗ 𝑑𝑑 +

𝑑𝑑2

𝑚𝑚
∗ 𝑤𝑤1 + (1 −

𝑑𝑑2

𝑚𝑚
) ∗ 𝑤𝑤2] (58)

The current entering the incremental line segment of Fig.18 is given in Equation (58) 
and will be used to compute the voltage drop and power loss in the incremental line 
segment. The voltage drop in the incremental line segment is given by

𝑑𝑑𝑘𝑘 = 𝑅𝑅𝑅𝑅[𝑧𝑧 ∗ 𝑚𝑚 ∗ 𝑑𝑑𝑑𝑑] (59)
Substitute Equation (58) into Equation (59):

𝑑𝑑𝑘𝑘 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇
𝑤𝑤1+𝑤𝑤2 ∗𝑚𝑚

∗ [ 𝑚𝑚 − 2 ∗ 𝑑𝑑 + 𝑥𝑥2

𝑚𝑚
∗ 𝑤𝑤1 + (1 − 𝑥𝑥2

𝑚𝑚
) ∗ 𝑤𝑤2] ∗ 𝑑𝑑𝑑𝑑} (60)

61

Fig.18 Trapezoid 
dimensions
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𝑑𝑑𝑘𝑘 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇
𝑤𝑤1+𝑤𝑤2 ∗𝑚𝑚

∗ [ 𝑚𝑚 − 2 ∗ 𝑑𝑑 + 𝑥𝑥2

𝑚𝑚
∗ 𝑤𝑤1 + (1 − 𝑥𝑥2

𝑚𝑚
) ∗ 𝑤𝑤2] ∗ 𝑑𝑑𝑑𝑑} (60)

The total voltage drop down the primary from node n to node m is given by

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫0
𝑚𝑚 𝑑𝑑𝑘𝑘 = 𝑅𝑅𝑅𝑅{𝑧𝑧 ∗ 𝐼𝐼𝑇𝑇

𝑤𝑤1+𝑤𝑤2 ∗𝑚𝑚
∗ ∫0

𝑚𝑚[ 𝑚𝑚 − 2 ∗ 𝑑𝑑 + 𝑥𝑥2

𝑚𝑚
∗ 𝑤𝑤1 + (1 − 𝑥𝑥2

𝑚𝑚
) ∗ 𝑤𝑤2] ∗ 𝑑𝑑𝑑𝑑}

(61)

Equation (61) is very general and is used in the following to determine the 
models for the rectangular and triangular areas.

62

𝑽𝑽𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = 𝑹𝑹𝑹𝑹[𝒁𝒁 ∗ 𝑰𝑰𝑻𝑻 ∗ (
𝒘𝒘𝟏𝟏 + 𝟐𝟐𝒘𝒘𝟐𝟐

𝟑𝟑 ∗ (𝒘𝒘𝟏𝟏 + 𝒘𝒘𝟐𝟐))]
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(61)

Equation (61) is very general and is used in the following to determine the models 
for the rectangular and triangular areas.

63

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅[𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 ∗ (
𝑤𝑤1 + 2𝑤𝑤2

3 ∗ (𝑤𝑤1 + 𝑤𝑤2)
)]

Rectangle
For a rectangular area the two widths w1 and w2 will be equal. Let

𝑤𝑤1 = 𝑤𝑤2=w (62)

Substitute Equation (62) into Equation (61):

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 ∗
𝑤𝑤+2𝑤𝑤

3∗ 𝑤𝑤+𝑤𝑤
= 𝑅𝑅𝑅𝑅 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 ∗ 3𝑤𝑤6𝑤𝑤 =𝑅𝑅𝑅𝑅 1

2
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇

(63)
Equation (63) is the same that was initially derived for the rectangular area.
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Equation (61) is very general and is used in the following to determine the 
models for the rectangular and triangular areas.

64

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅[𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 ∗ (
𝑤𝑤1 + 2𝑤𝑤2

3 ∗ (𝑤𝑤1 + 𝑤𝑤2)
)]

Triangle
For a triangular area the width w1 will be zero. Let

𝑤𝑤1 = 0 (64)
Substitute Equation (64) into Equation (61):

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 ∗
0+2𝑤𝑤2

3∗ 0+𝑤𝑤2
=𝑅𝑅𝑅𝑅 2

3
∗ 𝑍𝑍 ∗ 𝐼𝐼𝑇𝑇 (65)

Equation (65) is the same as was derived for the triangular area.
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The total three-phase power loss down the line segment can be developed by 
starting with the derived current in the incremental segment as given by Equation 
(58). The three-phase power loss in the incremental segment is

𝑚𝑚 =
𝐼𝐼𝑇𝑇

𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑚𝑚
∗ [ 𝑚𝑚 − 2 ∗ 𝑑𝑑 +

𝑑𝑑2

𝑚𝑚
∗ 𝑤𝑤1 + (1 −

𝑑𝑑2

𝑚𝑚
) ∗ 𝑤𝑤2] (58)

𝑑𝑑𝐷𝐷 = 3 ∗ 𝐸𝐸 ∗ 𝑚𝑚2𝑑𝑑𝑑𝑑 (66)
The total three-phase power loss down the line segment is then

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗ 𝐸𝐸 ∗ �
0

𝑚𝑚

𝑚𝑚2𝑑𝑑𝑑𝑑 (67)

Substitute Equation (58) into Equation (67) and simplify:

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗
𝐸𝐸 ∗ 𝐼𝐼𝑇𝑇 2

𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑚𝑚2 ∗ �
0

𝑚𝑚

[ 𝑚𝑚 − 2 ∗ 𝑑𝑑 +
𝑑𝑑2

𝑚𝑚 ∗ 𝑤𝑤1 + (1 −
𝑑𝑑2

𝑚𝑚 ) ∗ 𝑤𝑤2]2𝑑𝑑𝑑𝑑 (68)
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𝑷𝑷𝒍𝒍𝒅𝒅𝒍𝒍𝒍𝒍 = 𝟑𝟑 ∗ {𝑹𝑹 ∗ 𝑰𝑰𝑻𝑻 𝟐𝟐 ∗ [
𝟖𝟖𝒘𝒘𝟐𝟐

𝟐𝟐 + 𝟗𝟗 ∗ 𝒘𝒘𝟏𝟏 ∗ 𝒘𝒘𝟐𝟐 + 𝟑𝟑𝒘𝒘𝟏𝟏
𝟐𝟐

𝟏𝟏𝟏𝟏 ∗ (𝒘𝒘𝟏𝟏 + 𝒘𝒘𝟐𝟐)𝟐𝟐
]}

(68)
Evaluating the integral and simplifying results in

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗
𝐸𝐸 ∗ 𝐼𝐼𝑇𝑇 2

𝑤𝑤1 + 𝑤𝑤2 ∗ 𝑚𝑚2
∗ �
0

1

[ 𝑚𝑚 − 2 ∗ 𝑑𝑑 +
𝑑𝑑2

𝑚𝑚
∗ 𝑤𝑤1 + (1 −

𝑑𝑑2

𝑚𝑚
) ∗ 𝑤𝑤2]2𝑑𝑑𝑑𝑑

(69)

where R = r · l.
The rectangular and triangular areas are special cases of Equation (69).
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Rectangle
For the rectangle, the two widths w1 and w2 are equal. Let w = w1 = w2.
Substitute into Equation (68):

(70)

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗
8𝑤𝑤2 + 9 ∗ w ∗ w + 3𝑤𝑤2

15 ∗ w + w 2 = 3 ∗ [1
3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2]

Equation (70) is the same as Equation (44) that was previously derived for 
the rectangular area.
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Triangle
For the triangular area, the width w1 is zero. Let w1 = 0.
Substitute into Equation (69):

(71)

𝑃𝑃𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝 = 3 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2 ∗
8𝑤𝑤22 + 9 ∗ 0 ∗ w2 + 3 ∗ 02

15 ∗ 0 + w 2 = 3 ∗ [ 8
15 ∗ 𝑅𝑅 ∗ 𝐼𝐼𝑇𝑇 2]
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